If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+80x+100=0
a = 15; b = 80; c = +100;
Δ = b2-4ac
Δ = 802-4·15·100
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-20}{2*15}=\frac{-100}{30} =-3+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+20}{2*15}=\frac{-60}{30} =-2 $
| 9z+16=8z+11 | | 1/4x+1/2=1/3x-1 | | 75x+25x=1000 | | 4y+20=36-4 | | -4(x+6)-42=2-32 | | 6(3x-5)-7=35 | | 6+2x=-(x+4)+(3x-2) | | u+–635=76 | | (Y+8)+(2x+11)=180 | | -3x-5(-5x+19)=81 | | -7(x+4)-12=10+6 | | 4y-18=-20 | | 4t+3.8=2t-52 | | X+y=307 | | 79+40x=19+44x | | 2(3x+8)=8 | | 6x+3x=8x+5 | | 6x+3x=8x5 | | 2x+49=6x-19 | | 6.28=x3.14 | | 0.0016^x=5 | | 3+2y=18-4y | | 6.28=d3.24 | | 14-4x=12+2x | | 12+3x=9+3x | | y=17(12)^2+14(12)-9 | | 14s-39=100 | | 2y=180-18 | | 3(2x-5)=+5(3x-3) | | 6w+6=48 | | 5(2x+10)+2x=170 | | 5x6-6x=360 |